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Abstract—This paper presents a novel approach that combines
a modified Hill Cipher (HC) with Random Network Coding (RNC)
to achieve secure and loss-tolerant one-to-one communication.
Both algorithms operate by encrypting/encoding data through a
system of linear equations and decrypting/decoding it by solving
these equations. However, they differ in the following features:
modified HC ensures high security and RNC prevents data loss.
Our approach unifies and harnesses these techniques, leveraging a
high-speed Galois Field arithmetic library to expedite encryption
and decryption processes. Our results show that our approach
outperforms hardware-accelerated AES-256 encryption and de-
cryption in terms of speed. Implementation of our algorithms
within the QUIC protocol demonstrates significant throughput
improvements in both lossy and non-lossy communication scenar-
ios, promising higher reliability and increased speed for critical
wireless communication.

Index Terms—Cryptography, Network Coding, Packet Loss,
Galois Field, QUIC, Security

I. INTRODUCTION

With the spread of devices with communication functions in
recent years, secure and smooth wireless communication has
become essential. Furthermore, since those devices often have
limited resources, it is crucial to develop efficient algorithms
in many areas. In this paper, we propose a cipher algorithm
that achieves smooth communication by minimizing the need
for retransmission of lost packets. Implemented with our newly
developed Galois Field (GF) arithmetic technique, the proposed
algorithm performs faster encryption and decryption than AES-
NI accelerated AES-256.

The Hill Cipher (HC) [1], introduced in 1929, is a classic
symmetric cipher based on the following linear algebra:

c = Kp (Encryption/Encoding)

p = K−1c (Decryption/Decoding),
(1)

where
p Plaintext
c Ciphertext
K Shared key matrix
R Rank of K

While this cipher is intuitive and straightforward, it is known
to be vulnerable to the known plaintext attack. As a result,
various modifications to HC have been proposed to address
this vulnerability [2]–[7]. While some of these modifications
remain vulnerable, others offer a sufficient level of security.

Random Network Coding (RNC) [8]–[13] operates with the
same encoding and decoding principles as described in (1).

However, it introduces redundancy to minimize the need for
data retransmission in scenarios with lossy communication. For
example, assuming R = 3, K is a 3×3 matrix and |p| = |c| =
3, the encoding part of (1) can be expressed as:

c0 =k0,0p0 + k0,1p1 + k0,2p2

c1 =k1,0p0 + k1,1p1 + k1,2p2

c2 =k2,0p0 + k2,1p1 + k2,2p2.

(2)

RNC, for example, augments the matrix K by adding a
redundant row, resulting in the creation of four linear equations
as outlined below:

c0 =k0,0p0 + k0,1p1 + k0,2p2

c1 =k1,0p0 + k1,1p1 + k1,2p2

c2 =k2,0p0 + k2,1p1 + k2,2p2

c3 =k3,0p0 + k3,1p1 + k3,2p3

(3)

The values, c0 · · · c3, are then sent to the receiver. Even if one
of the values c0 · · · c3 is lost, the receiver can still reconstruct
p0 · · · p2, as long as the rank of the linear equations remains at
3. For example, suppose c1 was lost, and we have:

K̄ =

 k0,0 k0,1 k0,2
k2,0 k2,1 k2,2
k3,0 k3,1 k3,2

 . (4)

If K̄ is invertible, then the receiver can recover p by p0
p1
p2

 = K̄−1

 c0
c2
c3

 . (5)

Thus, RNC reduces packet retransmissions by transmitting
redundant data. Data loss significantly impacts throughput due
to frequent retransmission requests, but RNC greatly improves
it.

One drawback of RNC is the cost associated with encoding
and decoding. Integrating RNC into non-cryptographic commu-
nication results in additional CPU usage and communication
delays. However, if the data is supposed to be encrypted, and
RNC also serves as the encryption method, it can overcome
this drawback. This inspired us to develop our approach.

The calculation of encryption and decryption, such as (1),
(2), and (3), is generally performed in GF, and therefore,
the processing speed in GF significantly impacts practical
performance. We developed a new technique for region data
multiplication in GF (216) and GF (28) [14], which we imple-
mented in our cipher algorithms. As a result, our algorithms
achieve faster encryption and decryption speeds compared to©2023 IEEE, ASUSA Corporation



OpenSSL’s AES-256, even when accelerated by AES-NI, as
demonstrated in Section V.

Further details on the modified HC and RNC can be found
in Sections II and III. Section IV provides an illustration of
our algorithms, while benchmark results for throughput and
processing speed are presented in Section V.

II. RELATED WORK

In response to vulnerabilities, numerous modifications of the
HC have been proposed. The Augmented Hill Cipher (AHC)
[2] stands out by employing three key matrices and iteratively
XORing newly encrypted data with previously generated en-
crypted data. AHC also enhances security by integrating both
addition and XOR operations in encryption and decryption
processes. It is proven to be resistant to various common at-
tacks, including known-plaintext, chosen-plaintext, ciphertext-
only, dictionary, brute-force, and fault-analysis attacks. For
further details, please refer to Section III. To the best of
our knowledge, no vulnerabilities have been identified in this
method, and we adopt its algorithm for the cipher component
as a representative modified HC algorithm (see Section IV-B).

Another approach, presented in [7], employs an invertible
matrix as a public key and a circulant matrix as a secret key
for encryption and decryption. However, it has been reported
that multiple vulnerabilities exist in this method, as indicated in
[2]. Some methods combine the affine cipher with HC, such as
in [15] and [3], where data undergo monoalphabetic substitution
using a simple mathematical function. [16] proposes an affine
HC algorithm with matrices that have a Fibonacci sequences
feature. Additionally, [17] introduces a non-square key matrix
and adds redundancy to the encrypted data, but unlike RNC, it
cannot be used for communication redundancy.

To ensure security of IoT devices in which resources are
limited, many researches in recent years have focused on
developing lightweight cipher algorithms. Both [18] and [19]
propose algorithms that improve the efficiency of encryption
and decryption based on ARX (Addition or AND, Rotation,
XOR) with a generalized Feistel structure. An algorithm in-
troduced in [20] uses a technique named Matrix Encryption
Walks that makes use of coding structures referred to as
two-dimensional lattices. A decentralized approach for secure
communication between IoT devices is explained in [21]. All of
these algorithms perform fast encryption and decryption in re-
source constrained environment, while maintaining a sufficient
level of security.

The efficiency of RNC in handling packet loss is discussed
in [8] and particularly in [9], which implements RNC into
TCP and showcases remarkable throughput improvements in
lossy networks. Other works like [22], [23], [24], and [25]
delve into secure communication using RNC, but they often
assume networks consisting of many distributed nodes that
deliver packets through multiple routes. Consequently, they do
not guarantee security in one-to-one communication. In our
investigation, we found no prior research on the proactive use
of RNC for secure one-to-one communication.

QUIC is a recently developed network protocol aimed at
resolving inherent issues in TCP [26]. Built on UDP, QUIC is
designed to achieve low latency and more efficient congestion
and packet loss control compared to TCP. It also serves as the
official network protocol in HTTP/3. To showcase the advan-
tages of our approach, we have implemented our algorithms in
QUIC and measured their throughput.

III. AUGMENTED HILL CIPHER

In this section, we explain AHC using the following nota-
tions:

R Rank of matrix
n Modulus
P R×R matrix form of p (plaintext)
C R×R matrix form of c (ciphertext)
K R×R shared key matrix

A. Algorithms

AHC uses three shared key matrices, denoted as K0,K1,K2,
and performs plaintext encryption as illustrated in Algo. 1 and
Fig. 1. In this process, the ith plaintext Pi is first multiplied by
Ki mod 3 and K(i+1) mod 3 is then added to the result, yielding
C ′

i. To obtain ciphertext Ci, we XOR C ′
i with C ′

i−1.

Algorithm 1 Encryption in Augmented Hill Cipher

1: C′
−1 = K2

2: for i← 0 to N − 1 do
3: C′

i ← (Ki mod 3Pi +K(i+1) mod 3) mod n
4: Ci ← C′

i ⊕ C′
i−1

5: end for

Fig. 1: Encryption in Augmented Hill Cipher.

Algorithm 2 Decryption in Augmented Hill Cipher

1: C′
−1 = K2

2: for i← 0 to N − 1 do
3: C′

i ← Ci ⊕ C′
i−1

4: Pi ← (K−1
i mod 3(C

′
i −K(i+1) mod 3)) mod n

5: end for

Fig. 2: Decryption in Augmented Hill Cipher.



The decryption process in AHC is the reverse of encryption,
as demonstrated in Algo. 2 and Fig. 2. In this process, we start
with C ′

−1 = K2 and then XOR the ciphertext Ci with C ′
i−1

to obtain C ′
i. By subtracting K(i+1) mod 3 from C ′

i and then
multiplying by K−1

i mod 3, we retrieve plaintext Pi.

B. Security Analysis

In the encryption process, AHC initially XORs C ′
−1 (= K2)

with (K0 mod 3P0 + K(1) mod 3) mod n, as shown in the
leftmost part of Fig. 1. This step ensures that P0 (the beginning
of the original data) remains concealed. Subsequently, newly
encrypted data is XORed with previously generated encrypted
data, providing protection for the succeeding data. This com-
bination of operations, addition, and XOR, enhances security.

Regarding key length, the number of invertible R × R
matrices over n = 2α can be calculated as [27]:

l = 2(α−1)R2
R−1∏
k=0

(2R − 2k).

This formula determines the key length for each of the Ks in
AHC. For instance, if n = 216 and R = 8, we have l ≈ 21022,
and the total key length of AHC is 21022×3 = 23066, which
is more than sufficient. AHC can further extend its key length
by increasing the values of n, R, or the number of Ks. As
mentioned in Section II and Section 6 of [2], AHC is considered
highly resistant to most common attacks.

However, it is essential to acknowledge the possibility of
future vulnerabilities. It is important to note that our cipher
algorithms are based on AHC, but we are prepared to adopt a
more secure modified HC if any vulnerabilities are discovered.
For the purposes of this paper, AHC is assumed to be secure,
and it serves as an illustrative example of a modified HC.

IV. HILL CIPHER WITH NETWORK CODING

This section presents the algorithms for our Hill Cipher with
Network Coding HNC approach, using the following notations:

R Rank of matrix
n Size of each data or size of GF (= 216 or 28)
M # of data to process determined by SIMD (= 32)
P R×M matrix form of p (plaintext)
C R×M matrix form of c (ciphertext)
K R×R shared key matrix
Kβ R×M shared key matrix
KC′

−1
R×M shared key matrix

A. Implementing Augmented Hill Cipher

To optimize the practical speeds of encryption and decryp-
tion, we made slight modifications to the original AHC imple-
mentation. In particular, we utilize GF for matrix multiplication
and observed that the processing speed is highly dependent
on the efficiency of the GF arithmetic library used. We devel-
oped gf-nishida-16 [14], which leverages lookup instructions
in SIMD, such as AVX VPSHUFB or NEON VTBL. To the
best of our knowledge, this library is the fastest GF arithmetic
library for region multiplication in GF (216) and GF (28). It is
also open-sourced at [28].

SIMD instructions like AVX, SSE, or NEON typically pro-
cess data in chunks of 512, 256, or 128 bits. For matrix
multiplication, where matrix A is R × R and matrix B is
R ×M , gf-nishida-16 requires each row of matrix B to have
a total size of 512 bits for GF (216) and 256 bits for GF (28).
With 512/16 = 256/8 = 32, we set M = 32 for our matrix
multiplication. Consequently, the size of the plaintext matrix
P and the ciphertext matrix C must both be R × 32. This
adjustment also affects the sizes of the shared key matrices, as
explained below.

B. Algorithms of HNC with No Redundancy

Algorithm 3 Encryption in HNC with no redundancy

1: C′
−1 = KC′

−1

2: for i← 0 to N − 1 do
3: C′

i ← (Ki mod 3Pi +Kβ i mod 3) mod n
4: Ci ← C′

i ⊕ C′
i−1

5: end for

Fig. 3: Encryption in HNC with no redundancy.

Algorithm 4 Decryption in HNC with no redundancy

1: C′
−1 = KC′

−1

2: for i← 0 to N − 1 do
3: C′

i ← Ci ⊕ C′
i−1

4: Pi ← (K−1
i mod 3(C

′
i −Kβ i mod 3)) mod n

5: end for

Fig. 4: Decryption in HNC with no redundancy.

In the AHC encryption process, both Ki mod 3Pi and
K(i+1) mod 3 are R × R matrices (refer to Line 3 in Algo.
1). However, in the context of HNC with no redundancy
(HNCn), Ki mod 3Pi is R × 32, while K(i+1) mod 3 remains
R×R, resulting in a matrix size mismatch. To address this, we
introduce new R× 32 key matrices: Kβ0,Kβ1,Kβ2 to replace
K(i+1) mod 3 in Line 3 of Algo. 1, and an R×32 matrix KC′

−1
to

replace K2 in Line 1 of Algo. 1. The encryption algorithm for
HNCn is presented in Algo. 3 and Fig. 3, while the decryption
algorithm is detailed in Algo. 4 and Fig. 4. It is important to



TABLE I: Key lengths (bit) in HNC with no redundancy

n = 216 n = 216 n = 28 n = 28

R = 4 R = 6 R = 4 R = 6

Each of Ks 255.99997 575.99997 127.994 287.994

Each of Kβs 2048 3072 1024 1536

KC′
−1

2048 3072 1024 1536

Total 8959.99991 14015.99991 4479.982 7007.982

note that these new keys not only accommodate the matrix size
differences but also contribute to an increase in the total key
length of HNC, thereby enhancing its security.

C. Security Analysis

First, as HNCn shares the same algorithm with AHC except
for the newly added shared key matrices (Kβs, KC′

−1
) and the

extended sizes of matrices, we can consider HNCn to be at
least as secure as AHC from an algorithmic perspective. Next,
calculate the key length of HNCn. While K0, K1, and K2

are R × R matrices, they have a constraint that they must be
invertible. The number of invertible R×R matrices in GF (2α)
is given by [29]:

l =

R−1∏
k=0

(2αR − 2αk). (6)

As a result, we can determine the key lengths for each of
K0, K1, and K2 for different values of n (216 and 28) and
R (4 and 6), as shown in the second row of Table I. Since
Kβs and KC′

−1
are R × 32 matrices over 216 or 28 and have

no constraints, we can determine the key lengths for each of
them, as shown in the third and fourth rows of Table I. The
total key length can be calculated as:

{
2∏

i=0

(Key len of Ki)(Key len of Kβi)}(Key len of KC′
−1

). (7)

Using this formula, we obtain the key lengths for HNCn for
different values of n (216 and 28) and R (4, 6), as indicated
in the last row of Table I. Furthermore, it is worth noting that
HNCn exhibits a 50% Avalanche Effect for all combinations of
n (216, 28) and R (4, 6, 8). As a result, HNCn can be considered
secure, as long as AHC is secure. The complexity of the key
length for n = 2α and R is O(nR2

).

D. Computational Complexity and Configuration of Algorithms

The most expensive calculation in Algos. 3 and 4 is matrix
multiplication which costs O(R3). Hence, the difference in R
values of 4 and 6 can greatly affect the encryption and decryp-
tion speeds. Regarding n = 2α, where α = 8, 16, 32, . . ., many
GF multiplication algorithms including gf-nishida-16 exhibit a
time complexity of O(α) for processing data in GF (2α). In
practical terms, this means that multiplication in GF (216) costs
almost twice as much as in GF (28). Consequently, we have an
overall time complexity of O((log n)R3) for HNCn.

While it is true that using larger GFs and R hugely increases
the key length and thereby strengthens security, as indicated in

Table I, HNCns for R equal to 4, especially when coupled
with n = 216, still provide sufficiently long key lengths,
and therefore we recommend using R equal to 4, especially
when paired with n = 216, as the preferred configuration
for our algorithms. To substantiate the computational cost in
practical communication, our benchmark was made with the
combinations of n (216, 28) and R (4, 6) (see Section V).

E. Implementing Random Network Coding

In this section, we explain how to incorporate RNC into
HNC to create HNC with redundancy (HNCr). As mentioned
in Section I, adding a row to each key matrix introduces com-
munication redundancy, reducing the need for retransmission of
lost packets. We denote these extended key matrices as follows:

K̂ (R+ 1)×R shared key matrix
K̂β (R+ 1)× 32 shared key matrix
K̂Ĉ′

−1
(R+ 1)× 32 shared key matrix

Ĉ (R+ 1)× 32 matrix form of c (ciphertext)
A(r) Matrix without rth row of A
L Packet loss rate (0 ≤ L ≤ 1)

Algos. 3 and 4 are updated to Algos. 5 and 6, respectively, to
accommodate this redundancy.

Algorithm 5 Encryption in HNC with redundancy

1: Ĉ′
−1 = K̂Ĉ′

−1

2: for i← 0 to N − 1 do
3: Ĉ′

i ← (K̂i mod 3Pi + K̂β i mod 3) mod n
4: Ĉi ← Ĉ′

i ⊕ Ĉ′
i−1

5: end for

Algorithm 6 Decryption in HNC with redundancy

1: Ĉ′
−1 = K̂Ĉ′

−1

2: for i← 0 to N − 1 do
3: Identify lost row r ∈ [0, R] in Ĉi.
4: if no r found then
5: r ← any value ∈ [0, R].
6: PacketLoss← False
7: else
8: PacketLoss← True
9: end if

10: Ĉ′
i ← Ĉi ⊕ Ĉ′

i−1

11: Pi ← (K̂
(r)
i mod 3)

−1(Ĉ
′(r)
i − K̂

(r)
β i mod 3)) mod n

12: if PacketLoss then
13: Create lost rth row of Ĉ′

i from Pi using Algo. 5.
14: end if
15: end for

The sender transmits each row of Ĉi in separate packets. If
we assume that the rth row of Ĉi (0 ≤ r ≤ R) is sent in packet
r, then even if one of these packets is lost during transmission,
the receiver can still reconstruct the corresponding plaintext
Pi using the remaining R packets (as described in (4) and
(5)). When the packet loss rate L = 0, the communication
throughput decreases by 1/(R + 1) due to the redundant
transmission. However, for L ̸= 0, this redundancy technique
significantly reduces the need for retransmissions and thereby



TABLE II: Processing speeds of HNC with no redundancy (HNCn)
over OpenSSL (SHNCn/SOpenSSL) in local TCP communication. M1
shows lower values than Ryzen 7.

improves overall throughput. In the absence of redundancy, the
sender is required to retransmit the lost packet every time packet
loss occurs. With a redundancy of 1, if a packet is lost, the
sender only needs to retransmit the lost packet if one or more
other packets are lost within the R+1 packets that contain the
rows from the same Ĉi. The probability of this happening is
given by

1− (1− L)R. (8)

Hence, the retransmission rate decreases by (1− L)R, leading
to a significant improvement in throughput in lossy commu-
nication. For instance, when we have a packet loss rate of
L = 0.01 and a rank set to R = 4, the calculation yields
1− (1− 0.01)4 = 0.04. This indicates that retransmissions are
required for only 4% of the lost packets when the packet loss
rate is 1%. In our simulations, this translates to a remarkable
200% increase in throughput, as demonstrated in Section V-C.

Regarding security, if there were a method to crack HNCr,
it would also apply to HNCn since HNCn can be seen as a
special case of HNCr (e.g., when the Rth rows of K matrices
are identical to their (R− 1)th rows). This implies that HNCr
is at least as secure as HNCn. Therefore, HNCr is secure as
long as AHC is secure.

V. BENCHMARK RESULTS

A. Throughput in TCP

In this section, we present a comparison of throughput
and processing speed in local TCP client-server communi-
cation using OpenSSL (accelerated with AES-NI, utilizing
the TLS AES 256 GCM SHA384 algorithm) and HNCn. We
consider different values of n, specifically n = 216 and
n = 28, as well as different ranks (R) for the matrices, with R
taking values 4 and 6. These measurements were conducted
on both AMD Ryzen 7 5800X and Apple M1 CPUs, and
all communication and encryption/decryption processes were
executed on a single thread.

As shown in Fig. 5, HNCn implementations, with the excep-
tion of HNCn-16bit-6, show higher throughput than OpenSSL,
particularly noteworthy are HNCn-8bit-4 and HNCn-16bit-4 on
Ryzen 7, which exhibit three times and two and a half times
the throughput of OpenSSL, respectively.

The difference in results for R values of 4 and 6 is attributed
to the computational cost of matrix multiplication, as described
in Section IV-D. HNCn with R equal to 6 performs noticeably
slower than the version with R equal to 4.

To assess the processing speed, which encompasses encryp-
tion, decryption, and any additional overhead introduced by

Fig. 5: Throughputs in local TCP communication with OpenSSL
and HNC with no redundancy (HNCn). HNCns mostly show higher
throughput.

Fig. 6: Throughputs in local QUIC communication with OpenSSL and
HNC with no redundancy (HNCn). HNCns show higher throughputs
except for HNCn-16bit-6.

utilizing the target algorithm (Algo), we introduce the following
metric:

SAlgo = 1/
(
1/TPAlgo − 1/TPNon-crypto

)
, (9)

where TP represents throughput. It is important to note
that the throughputs in non-cryptographic TCP communication
(TPNon-crypto) are 126.55 Gbps on Ryzen 7 and 105.58 Gbps
on M1. Table II presents the values of SHNCn/SOpenSSL. On
Ryzen 7, HNCn performs 2.2 to 4.3 times faster than OpenSSL,
while on M1, it achieves processing speeds 0.9 to 1.9 times
faster. Notably, HNCn with R equal to 4 outpaces OpenSSL in
processing speed. However, it is worth mentioning that HNCn
on M1 does not exhibit as high processing speed ratios as
those on Ryzen 7. This discrepancy can be primarily attributed
to the register size of ARM NEON, which is 128 bits—half
that of AVX’s 256 bits. In practice, our algorithms with SSE,
which also has a 128-bit register size, are approximately 30%
slower than their AVX counterparts. For efficient encryption
and decryption, SIMD instructions with larger register sizes
are preferable.

B. Throughput in QUIC

QUIC is an encrypted, multiplexed, and low-latency protocol
designed to enhance transport performance for HTTPS traffic
[30]. Because data encryption is an inherent feature of QUIC,
it serves as an ideal platform for testing HNC. MsQuic [31],
backed by Microsoft, is one of the most active open-source
projects implementing QUIC. It utilizes OpenSSL as its cipher
library on Linux and MacOS. We integrated HNCn into MsQuic
and measured throughput and data processing speed using the
same settings as those outlined in Section V-A.



TABLE III: Processing speeds of HNC with no redundancy (HNCn)
over OpenSSL (SHNCn/SOpenSSL) in local QUIC communication.
HNCn-8bit-4 on M1 shows an irregularly high value.

The results are presented in Fig. 6 and Table III. The
non-cryptographic throughputs (TPNon-crypto) are 6.31Gbps for
Ryzen 7 and 4.80Gbps for M1, respectively. With the exception
of HNCn-16bit-6, HNCns generally exhibit higher throughputs
compared to OpenSSL, although the differences are not partic-
ularly significant. Regarding processing speed, the values of
SHNCn/SOpenSSL on Ryzen 7 are not as impressive as those
observed in TCP scenarios. However, HNCns running on M1
demonstrate relatively strong performance, except for HNCn-
16bit-6. It is worth noting that our implementation does not
fully leverage packet length optimization, which can impact
data processing efficiency in QUIC. QUIC operates on top
of UDP, and the packet length depends on the Maximum
Transmission Unit (MTU) size, which in turn determines the
payload length in each packet. For an MTU size of 1500 bytes,
QUIC packets generally have payloads exceeding 1450 bytes,
as MsQuic tends to maximize payload utilization. However,
the most efficient payload lengths for HNCn are given by
64 × R × N for n = 216 and 32 × R × N for n = 28,
where N is an integer. With an MTU size of 1500 bytes and
R = 4, these payload lengths have upper bounds of 1280 bytes
and 1408 bytes, respectively. For R = 6, the upper bounds are
1152 bytes and 1344 bytes, respectively. Consequently, the ideal
payload lengths for HNCn are generally shorter than typical
QUIC payload lengths. This inefficiency in payload length
contributes to HNCn’s lower efficiency in QUIC compared to
TCP. This results in lower SHNCn/SOpenSSL values on Ryzen
7 (when comparing the second rows of Table II and III). We
have not yet identified the specific factors causing some high
SHNCn/SOpenSSL values on M1, particularly for HNCn-8bit-4.
Further investigation and payload length optimization will be
necessary in the future.

C. Throughput in Lossy Communication

While redundancy is unnecessary for HNC when no packet
loss occurs, it becomes crucial to introduce HNCr (HNC with
redundancy) to enhance throughput when consistent packet loss
is observed. In our experiment, we extended MsQuic to accom-
modate HNCr and conducted a throughput comparison between
OpenSSL (without redundancy) and HNCr (with redundancy
level set to 1) in a lossy communication environment. To
simulate packet loss, we intentionally dropped received packets
within MsQuic based on the designated loss rate. We also lim-
ited the available bandwidth to 60Mbps and introduced a 50ms
network delay using Linux’s tc command. This designated loss
rate is denoted as L.

The results, shown in Fig. 7, can be summarized as follows:

Fig. 7: Throughputs in local lossy QUIC communication with no
redundancy (OpenSSL) and HNC with redundancy (HNCr). HNCrs
generally show higher throughputs.

1) HNCrs consistently achieve higher throughputs than
OpenSSL across the entire range. The overall average
ratio of TPHNCr/TPOpenSSL is 3.08.

2) HNCrs exhibit significantly higher throughputs than
OpenSSL for L = 0.1–0.5%, with TPHNCr/TPOpenSSL
ratios ranging from 2.69 to 5.00. However, their through-
puts become comparable at around L = 1.5%.

3) Notable differences are not observed among different
HNCr configurations, especially among those with the
same R value.

4) OpenSSL experiences a significant drop in throughput
between L = 0 and 0.1%. Although throughput slightly
recovers beyond this point, it gradually declines after
reaching L = 0.5%.

5) HNCr–4 and HNCr–6 configurations exhibit sharp re-
ductions in throughput between L = 0.5–1.5% and
L = 0.5–1.0%, respectively, but subsequently maintain
stable throughputs.

The advantage of HNCr is highlighted in point 1), but it is
important to note that in point 2), TPHNCr/TPOpenSSL is not
consistent. While the reasons behind points 4) and 5) have not
been confirmed, our speculation is that they may be attributed
to the design and implementation of MsQuic. In summary, the
redundancy (RNC) technique proves to be effective, and HNCr
significantly enhances throughput in lossy communication.

Note that QUIC is used to incorporate Forward Error Cor-
rection (FEC) to recover a single packet loss within a group.
However, this feature was eventually removed due to its limited
effectiveness. It was also reported that FEC led to a slight
increase in video latency and video rebuffering rates, without
providing sufficient advantages in terms of bandwidth usage
[30]. While we have not measured all the impacts of HNCr, it
has the potential to serve as an alternative to FEC.

VI. FUTURE WORK

It is clear that HNC is better suited for wireless commu-
nication than wired connections. In particular, we believe it
meets the requirements for secure and reliable satellite com-
munication, which is essential for preventing eavesdropping



and mitigating data loss due to jamming. Suppose a satel-
lite communication system has multiple channels denoted as
Ch0, Ch1, ..., ChR, and each packet, labeled as r in Section
IV-E, is transmitted through the channel Chr mod (R+1). In
this setup, even if one of the channels becomes jammed
or disrupted, the receiver can still recover the original data
using the packets received through the unaffected channels.
Additionally, even in a scenario where an eavesdropper gains
access to all the communication channels and intercepts all
encrypted data, decrypting it would be an exceedingly difficult
task. Thus, theoretically, HNC enables secure and reliable
satellite communication. However, as described in Section V-B,
our current implementation is not optimized for transmitting
data in packets of a specific size. We need to explore more
efficient methods for packaging encrypted data into packets.
Additionally, it is crucial to maintain a vigilant focus on security
analysis regarding the modified HC.

VII. CONCLUSION

In this paper, we have introduced an approach that securely
encrypts and decrypts data at high speeds while demonstrating
tolerance to packet loss. Our benchmark results illustrate that
HNC with non-redundancy outperforms AES-256 in terms of
encryption and decryption speed. Additionally, HNCr signif-
icantly reduces the need for packet retransmission in lossy
communication scenarios. These results collectively manifest
as an overall high throughput in our benchmarks, substantiating
the advantages of HNC. We believe that our approach con-
tributes to enhancing the reliability and smoothness of wireless
communication, ultimately providing added convenience to
Internet users.
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